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Abstract. In this study, we investigate the suitability dfi&-3 finalists for lightweight applications. For &a
finalist, we try to achieve the lowest reportedegabunt while maintaining a respectable throughg@uir
approach differs from all previous SHA-3 implemeintas, which mainly focus on high performance imts of
throughput. We mainly favor a word-serial approattour designs to achieve low gate count, wherentbel
size varies from 8 to 64-bits depending on thecstine of the hash function and the tradeoff betwieoughput
and area. All hash function cores are realized énilvg-HDL, synthesized using 90nm UMC CMOS staddar
cell library and optimized for area for prototyping generic FIFO based /O interface is also bmilbrder to
establish data transfer between an external céertrahd the active hash function core. Results sthaty Grastl
has the lowest gate count, while BLAKE gives thstlileroughput and throughput/area figures. To #s bf our
knowledge, this is the first comprehensive studyhmnsuitability of SHA-3 finalists for lightweiglapplications.
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1 Introduction

NIST announced a public competition on Novembe&®7 to develop a new cryptographic hash algorjttjmThe
winning algorithm will be named 'SHA-3' and the Inadgorithms currently specified in FIPS 180-3, BecHash
Standard [2], will be augmented. At the moment, thied and final round of the NIST SHA-3 competitids
ongoing, in which five finalist algorithms are bgigonsidered for the final selection: BLAKE [3], &tl [4], JH
[5], Keccak [6] and Skein [7]. There have been msiylies and discussions on these algorithms #ivrecday they
were submitted. Implementation of the algorithmarsimportant part of these investigations. Sevesétivare and
hardware implementations deal with effective arghlperformance realization of the candidates orda wange of
platforms from embedded processors to custom ASHOsever none of them offer a comprehensive studyhe
suitability of the SHA-3 candidates for lightweigipplications.

The term “lightweight” alone covers a very wide ganof devices, such as RFID (Radio-Frequency
IDentification) tags for identification and trackjmpurposes using radio waves, smart cards to peadientification,
authentication, data storage and application psicgsand sensor nodes to gather sensory informaiach of
these devices have different requirements in teshq@ower, operating conditions, speed, area, efigsich means
that a study for the lightweight suitability of asgcurity algorithm will have to be done takingoirtccount the
specific needs of the application. On the otherdh#ime most common characteristics of all lightvagigpplications
are the necessity of low cost and sufficiency of Ispeed. For most lightweight devices, low gatentaalso
corresponds to low power consumption, and speedigiinput is not very important. Therefore, we hageided to
limit our focus to low gate count for ASIC implentations.

In today's world, there is a high increase in thiization of these devices, which results in séguand
identification problems. The need for lightweighymtographic hash functions as part of securitytgmols has been
repeatedly expressed. As a result, a few lightwdigish algorithms have recently emerged [8]-[1@widver, these
algorithms are quite immature, and their compreiverenalyses are yet to be done.

On the other hand, SHA-3 candidates have already b&ensively investigated in term of securitydas a
result all but the remaining five finalists haveeheeliminated. From this point of view, it makesahnunore sense to
study the suitability of these finalists for ligtgight applications and, if necessary, come up wsitfpgestions for a
possible lightweight extension and/or option in tipgoming SHA-3 standard.

It is the main of target of this study is to presefficient compact implementations of Round 3 SBl&andidates
offering the lowest possible gate count (and ttweefthe lowest power consumption), whereas thelteagu
throughput is still within the limits desirable fightweight applications. One approach to achithis target is to
replace registers by RAM(s) and implement minimambinational circuitry necessary for the realizatiof
computational operations. Another approach is &pkidae registers, but perform computational openatiserially,
thereby saving from the combinational logic anceiobnnection area. We opted for the latter optimajnly
because of the non-standard block memory interfacdsperformances offered by different processneicyies.



We also believe that the structures we proposeséoh hash function can be easily modified and wgddn a
hybrid approach.

In our study, we chose the 256-bit message digagirofor all finalists. Our designs are both shi¢gafor ASIC
and FPGA platforms. However, we have used 90 nm UBMOS technology for our implementations. Area
optimized synthesis results show that Grgstl offeeslowest gate count, while BLAKE offers the b#sbughput
and throughput/area numbers. We have also compdedfinalists with each other to observe the overal
performance.

The rest of the paper is organized as follows:doti®ns 2-6, a brief description of each algoritisrfollowed by
the implementation details of that algorithm, origad alphabetically. Section 7 describes the iatmfused to
connect all hash modules. In section 8, implemantatesults are provided and the results are coedparith
previous works. Finally, the paper is concludechiitture directions in Section 9.

2  BLAKE

2.1 Algorithm

BLAKE [3] is a family of four hash functions: BLAKR24, BLAKE-256, BLAKE-384 and BLAKE-512, which
follows the HAIFA iteration mode [11]. The compr&ssfunction depends on a salt and the numbertsfhashed
so far (as counter): A large inner state is initied from the initial value, the salt and the ceuntand it is
injectively updated by message-dependent roundbiuist finally compressed to return the next achaalue, as is
shown in Figure 1.
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Figure 1. BLAKE compression function

The inner state of the compression function isaspnted as a 4x4 matrix of words. In one round LOAKE-
256, all four columns and then all four disjoindgibnals are updated independently. In the updataeaf column or
diagonal, two message words are input accordirrground-dependent permutation as shown in Figure 2.
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Figure 2. One round of BLAKE and the underlying G, function
Table 1 shows the specification of BLAKE for 256@-miessage digest.
Table 1. BLAKE specifications
Algorithm Word Message Block Salt Rounds Digest
BLAKE-256 32-bit < 254 _pit 512-bit 128-bit 14 256-bit

2.2 Implementation Details

The serialized architecture for BLAKE is given ilgire 3. The first operation is the initializatiomhere data is
written into the state registers as 32-bit wordd.éhcycles. The salt, hash and message registbish are also
shown in Figure 3, store the salt, the hash andniesage, respectively. The state words are theregsed by the
half G function block shown in Figure 4, together withe thorresponding values from the other registerd, an
written back on to the state register. Thdunction module operates on each columnGgg, and then four disjoint
diagonals forG,; twice because of its ‘half’ structure. This sturet while reducing the area doubles the cycle
count.
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Figure 3. BLAKE serial architecture
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Figure 5. BLAKE serial data flow



As shown in Figure 5.3 is processed at first, in halves (namidlyandH,) followed by the processing &;.;,
again in halves. The multiplexers are switched rideo to make sure that the sequence of the sepatigessed
words gives the same result as a parallel impleatient This process is repeated for 14 rounds zamelw message
block is injected after the 14th round (if it esistinjection of message blocks continues until l&st block. The
finalization process returns the next chain vabwrenfessage digest, if it is the last message block)

The whole process is explained in ‘phase-roundeyancept in Figure 6. In phase-0, the salt isliea8 cycles.
In the following 4 cycles, the length of the messéipck is read, which is phase-1. Following thegté, the first
message block is read in phase-2 in 16 cycleshbse 3, the data processing is performed for 1Ad®each
round in 16 cycles). The next message block is neqthase-4. However, after the last message btbekmessage
digest is written back in the first 8 cycles of pbat.

clock LI LML LML MM i i L L L

start pulseJ_|
pp— I LT LT 1 1
push l—l—
phase_x 0 X 1 X 2 X 3 X 4 X 3 X 4 X
round XIX B GEEEED

eyele XX - XX - XXX - XXX -~ XXX - XTEX - XX - XTEXTXK - XTEXTX - XX - XX - XTI XX - XXX - XK~

last 1

active [ L
ready

Figure 6. BLAKE timing diagram

3 Grgstl

3.1 Algorithm

Grgstl [4] is a collection of hash functions, whicdin return message digests from 8 to 512 bitshit 8teps. The
variant returningn bits is called Grgsth. Hashing starts by padding the input mesddgend splitting it intd-bit
messageam, ... , m. Each message block then is processed sequeriialtiie iterative compression functién
whose other input is thebit chaining input with an initial value dk=iv, as shown in Figure 7. For Grgstl variants
with n up to 256 (which covers our caskjs defined to be 512. After the processing ofltst message block, the
outputH(M) of the hash function is computed lE&M)=0Q(h,); where( is the output transformation, whose output
size isn bits, wheren < 2I.

my my m; iy

Lo L L)
v~ f » f :ﬁ—» ----- \::I? ,’E",ﬁ_’”{””

Figure 7. Grgstl compression function

The compression functiorf is based on twol-bit permutationsP and Q, which is defined as
f(h,m) = P(WJm)JQ(m)Jh; and the output function is defined BYx)=trunc,(P(x)dx),where trung(x) discards all
but the trailingn bits ofx. Both functions are illustrated in Figure 8. Fig@® shows details ¢f andQ permutations.

m; » Q
A\ 4 y f"\
iy »D—| P > h, >» P »D—> —» H(m)
A

Figure 8. Grastl construction functionf (left) and output function Q (right)

Table 2 shows the specification of Grgstl for 2%6Giessage digest.

Table 2. Grgstl specifications

Algorithm Word Message Block Salt Rounds Digest




SubBytes ShiftBytes for P
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Figure 9. P and Q permutations

3.2 Implementation Details

The serialized architecture for Grgstl is showrFigure 10. There exists only a single block forhtbBtand Q
operations in order to save area, which also allosv$o use the same block for béthnd Q functions. For thé
function, message and previous hash result (whigh at the first round) are selected as input. Fordbput
function omega, the only input comes from hashstegiand zero is selected instead of the message.

wessase —f) ﬁ P/Q Block ,/|
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" e H-{a{a{a{a{a A {A{A g e
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i

Figure 10. Grgstl serial architecture
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Figure 11. Details ofP/Q block



While the message is processed insidePttigmodule inP mode, it is also stored inside the temp registethe
Q mode, the result d® is stored inside the temp register while the mgessa restored. It is then processeddn
mode, and its result is combined with feesult (restored from the temp register) and tiezipus hash value. The
detailed block diagram d?/Q module is shown in Figure 11. It basically implersea modified version of the
serial AES-like data flow in [12] via SubBytes, 8Bites and MixBytes functions. The data flow foda4 toy
version of ShiftBytes and MixBytes are given in g 12, note that ShiftBytes operation is differiemt® andQ.

The whole process is explained in ‘phase-half rexguchd-cycle’ concept in Figure 13. In phase-0, ldregth is
read in 10 cycles. Phase-1 is for reading thediigtition vectoiv. Following this, the message blocks are read and
processed. Finally, in phase-3, the message dgyesitten back during phase-3.
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Figure 12. Data flow for 4x4 toy version
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Figure 13. Grgstl timing diagram




4 JH

4.1 Algorithm

JH [5] is a family of four hash algorithms — JH-22#-256, JH-384 and JH-512. In the design of Jebrapression
function is constructed from a large block ciphethwconstant key. Generalizedidimensional AES design
methodology is applied in the design of the largeher. In our case of 256-bit digest,is set to 8, hence the
compression function is named Bg It sequentially processes the padded and splisage blocksn, ... , m,
starting with an initial vectoriy), as shown in Figure 14.

mj; mj ms m;
v ¥ ¥ v
v —»| Fg || Fs (> Fs (> ---- —>{ Fg [ H(m)

Figure 14. JH compression function

Fs is bijective due to the block cipher, whose bletke is2m bits. Its structure is shown in Figure 15 together
with the internal functiors. The2m-bit hash valuéd.;) and them-bit message blockl; are compressed into the
2mbit H(i). Eg is also bijective and applies SPN and MDS to thafday. MDS is applied before the first and after
the last rounds. The round functid® consists of an S-box layer (selected via roundst@ots), a linear
transformation layer (applied on bytes) and a péatian layerPg (composed of three permutations), whose details
can be seen in Figure 1/ is repeated 42 times.
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Figure 15. Structure of Fg compression function (left) andgg function (right)
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Figure 16. Three layers of round function
Table 3 shows the specification of JH for 256-bitssage digest.

Table 3. JH specifications

Algorithm Word Message Block Salt Rounds Digest
JH-256 32-bit < 204 _pit 512-bit 42 256-bit  JH-256




4.2 Implementation Details

The serialized architecture for JH is given in Fegi7. 32-bit datapath is used in the serializegglémentation of
JH. The state register is filled with the sum (XQR}he initialization vector and the message blatthe beginning
of the process, while the message is also backéd tlyg message register for post-processing. Wpampletion of
the rounds, the output of thg block is combined with the backed up message itm the next value of the state
register (hash), which in turn is summed with tlegtrmessage block. This process continues untthallmessage
blocks are processed.

GROUP / UNGROUP BLOCK
gu gu gu gu gu gu gu r:g‘ias‘fer

P’y Permutation

message
MESSAGE register
' [Ab{aAb{ab{ab{ab{AP{ap{aA{ab{aAb{AB{aP{A{AB{Ab]{A]

Figure 17. JH serial architecture

The group/de-group block realizes the grouping aedgrouping steps oEg function. It only performs
grouping/de-grouping at word level. Instead of iempenting bit-level grouping/de-groupings round function is
modified in order to support operation on the whadel grouped input and produce output compatikith word
level de-grouping. Serializeles round function consists of an S-box, the lineansformation block, and thag, Py’
and ¢ partial permutation blocks. All, except tRg-module, operate on 32-bits.

The serial data flow of JH is shown in Figure 1&thrts with the grouping round, which lasts f@rc¥cles. This
round is followed byRs round function for 42 rounds (each of them is ag22 cycles). AftelRg process, de-
grouping round is performed. These grouping andjrdeping operations result in two additional rounasich
make 44 rounds in total. For the last message btmuk extra quarter round is required for squeettisgutput.
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Figure 18. JH serial flow



The whole process is explained in ‘phase-roundetyabncept. In phase-0, the length of the mess#uek bis
read. Then, in phase-1, initialization vector iade@nd stored in state register. In phase-2, thesage blocks are
read in every round-0 and these message blockzracessed from round-1 to round-44. Also, the ngessligest is
written back in round-44 of the last message blagain in phase-2. This scheme can be seen ind=igur

ctock LML A rrmnrmnrnmnr i rmnrr

startpulse | |
pp — LT LML 1 1
push l—l—
phase —X 0 X 1 X 2 X
round X 0 X 1 XX 7] X 0 X 1 X X 7] W

eyele — XX - XX XX - XXX - XEXEX - XX - XXX - XX - XX XEX XX - XX - XEX - Ko
last {

active —| -
ready

Figure 19. JH timing diagram

5 Keccak

5.1 Algorithm

Keccak [6] is a family of hash functions based ba $ponge construction [13]. The fundamental faemcts the
Keccakf[b] permutation, which consists of a number of simplénds with logical operations and bit permutation.
b(1{25,50,100,200,400,800,1600} is both width of thermputation, and width of the state in the sponge
construction. In our work, we concentrate on Keeifag800] with 256-bit message digest.

The state of Keccak is organized in 5x5 lanes, edtthw-bits, wherew(1{1,2,4,8,16,32,64}, andtb=25w. The
Keccalr,c,d] sponge function (Figure 20) is obtained by apmyihe sponge construction to Kecdfic] with
the parameters capacity bit rater (which are 512 and 1088, respectively, for KecfaB00]). The flow of
Keccakf and the details of the steps are given in FigureThe number of rounds depends on the permutation
width which is calculated by, = 12+2%, where 2=w. This yields 24 rounds for Keccdk-600].
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Figure 20. Sponge construction of Keccak
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Figure 21. Keccakf function and steps of the function



Table 4 shows the specification of Kecdfl00] for 256-bit message digest.

Table 4. Keccak specifications

Algorithm Word Message Block Salt Rounds Digest
Keccak-256 64-bit < 2128_ pit 1088-bit 24 256-bit  Keccak-256

5.2 Implementation Details

The serialized architecture for Keccak is giverfrigure 22. In the serial design, data is procegséahes, which is
1/25 of the whole state. The state registers, nuetb@4-0, are used to store the internal state, thadfour
summation registers (rightmost registers numbere®) 4tore the row sums. The operational blocks twhic
implement a Keccak round are ti&e p, 77 ), -modules. All, butzzmodule, operate on a single larrestep is
executed in parallel on all 25 lanes. It is a fiysimutation operation, and the only area cost sdnoen additional
multiplexers and routing. There is additional acest caused by sum registers (required éstep) and two
temporary registers (required fgrstep). However, this additional area is compermkhiethe huge area saving of
the serialized processing and the resulting sitagie combinational blocks.
0/1
1 0

x{1}«RC

0/1

MESSAGE —
HASH <

Figure 22. Keccak serial architecture

The processing starts with round-31, where thetten§the message block is read. Then round-0 comlesre
data is written in lanes into the state registeid @ach row sum is accumulated inside the sumteggisThe first
incoming data is lane(0,0) and shifted into statgster 24 while sum register 4 is filled with temme value. In the
next cycle, state register 24 is shifted into statgster 23 and filled with the incoming lane(1,B) parallel, sum
register 4 is shifted into sum register 3, andnigalized with lane(1,0). At the end of the filstcycles, the first 5
lanes of data are in state registers 24 to 20,enduim registers 4 to 0 have the first lanes of eadlimn. In the
following cycles, incoming data are added on to segisters and shifted into the state registerghAtend of the
first 25 cycles, state registers contain the filtesand sum registers contain the row sums.

Starting with the next cycled and p operations are run in parallel from lane(0,0) lulathe(4,4), covering the
whole state. These operations are completed iny2e< It is followed by another 25 cycles, whetey and/
operations are performed. Singean only be executed on the whole state, it iedorparallel with the first lane of
X. { operation (round constant addition) is also danéhe same cycle. In the following 24 cyclgspperation is
performed on the remaining lanes, completing th&t fiound. Each of these 25 cycles are named #srthands’.
The row summations for the following round are gisoformed in parallel withz y and/ operations of the current
round, as an additional optimization. A full routadkes 50 cycles to complete.

At the end of the 24 rounds, the second half roefrithe ‘last’ round is used for ‘squeezing’ the wage digest.
The timing diagram in Figure 23 shows the roundf, teaind and cycles for processing of two messadgeks.
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Figure 23. Keccak timing diagram

The whole data processing in each half round ida@rxgd by a 3x3 lanes toy-version of Keccak in réga4,
instead of the actual 5x5 lanes configuration.
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Figure 24. Keccak data flow

6 Skein

6.1 Algorithm

Skein [7] is a family of hash functions with thréiéferent internal state sizes: 256, 512 and 108} twhere Skein-
512 is the primary hash function and can be usedlfacurrent hashing applications. Skein hash fiancis build
out of a tweakable block cipher (ThreeFish), whidlows hashing configuration data along with thpuintext in
every block, making every instance of the compoes$inction unique. In addition to ThreeFish twezkablock
cipher (256, 512 and 1024-bit block sizes) at thee cSkein is built is built up of a unique blo¢kration (UBI),
which maps an arbitrary input size to a fixed otitpige, and an optional argument system to alloppstting
different optional features. The normal (straightfard) hashing option we use can be seen in Figbiré&irst block
is for configuration, following instances are foessage processing, and the last block is for oymatessing.

config m; m 0

Y Y A 4 A 4

Three| K . |Three| X Three| K |Three| K .
0 —> Fish [P Fish [P —| Fish [>D Fish [>D—> H(m)
I I I I
type:CFG type:MSG type:MSG type:OUT

Figure 25. Skein normal hashing scheme

ThreeFish tweakable block cipher is defined for,2562 and 1024-bit block sizes. The key is the saine as
the block, and the tweak value is 128 bits forbédick sizes. Each one of Skein-512's 72 roundsisisnef four
MIX functions followed by a permutation of the etg#-bit words. A subkey is added every four rouridse word
permutation is the same for every round, and thegtiom constants repeat every eight rounds. A kégdule is also
performed for generating subkeys from the origkeal and the tweak. Figure 26 shows ThreeFish-5h2toaction
for four rounds together with the internal details the MIX function, which is an add-rotate-XOR (XR
construction.

Table 5 shows the specification of Skein for 256néssage digest.

Table 5. Skein specifications

Algorithm Word Message Block Salt Rounds Digest
Skein-256 32-bit < 254 _pit 512-bit 72 256-bit  Skein-256
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Figure 26. Four rounds of ThreeFish-512

6.2 Implementation Details

The serialized architecture for Skein is given igufe 27. In round-0, the rightmost eight key exgan registers
are filled with input key in 8 cycles, while allgnt key words are accumulated in the leftmost legjister. This
practically implements the key expansion procedismee for ThreeFish. Following this round, statgister is filled
the sum of the input message block and the subkegrgted in the previous round. In parallel, kegassion
process continues within the key registers. Atddme time, message block is backed up inside tlssage register
for post-processing following the completion of BireeFish rounds.

ThreeFish processing inside the state registeroite dvia a 128-bit MIX block and a fully parallel Zbit
permutation block, which is a fixed 64-bit word bdgpermutation. Its only cost is multiplexers. Tg8-bit MIX
block requires an additional 64-bit temporary reggisn order to collect 128-bits of data. At thedesf round-42,
ThreeFish operation is completed, and round-43%é&luo add the stored messages on to the ThreedsSish (UBI
operation) in order to obtain the next state of llash. The operation is repeated until all messdgeks are
processed. The serial data flow of Skein is shawFigure 28.

message
register

|

state
register

HASH
v

key expansion register
Figure 27. Skein serial architecture

The whole process is explained in ‘phase-roundetyobncept. In phase-0, the length of the mess#mgk lis
read. Then, in phase-1, 512-bit initialization weds directly read from RAM, which makes additibi@reeFish
run not necessary. In phase-2, the message bloek®ad and processed. Following this, hash valugpdated in
phase-3. Phase-2 and phase-3 are repeated in setiesll message blocks are processed. Afteiptioeessing of
the last message block, the message digest igwhtck in that block's phase-3. This scheme caebe in Figure
29.
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Figure 28. Skein serial flow
clock
start pulse _|_|
pop — I LT LT 1
push
phase —X 0 X1 X 2 X—= X 2 X3 X Z X 5

eyele —X X XZX XX - XX - XXX XX - XX - XXX XX - XX - XXX - X —

last 1

active —| | I
ready

Figure 29. Skein timing diagram

7 Interface

All five hash modules are connected to a 32-bit@-Ifased 1/O interface module for connection to eékternal
world in the future prototype IC. Internal interéawith modules is 64-bit for Keccak and 32-bit &irother blocks.
The FIFO is organized as an even/odd couple inraaerovide 64-bits necessary for the Keccak bl@mtith
FIFOs active) and 32-bits for the others (odd FH&live in odd cycles, even FIFO active in even e&gtlA simple
REQuest/ACKnowledge signaling scheme is implementéetre REQ signal is set when FIFO is almost erapty
ACK is set when the result is ready. 2016 bytesiefmory exist for MESSAGE/DATA and 32 bytes are prédor
HASH result (message digest). The architecture lesaimly the selected module, and disables the®tha clock
gating. This interface architecture is shown inurgg30.
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Figure 30. Interface model

8 Results and Discussion

In our study, we achieved better results than rab#te previous works in terms of area and through@rgstl and
BLAKE give the best gate counts. Best throughpuhbers are presented by BLAKE and Keccak, whileltbst
results are provided by BLAKE and Keccak in terrhthooughput/area.

Note that, except for Keccak, all hash functiongehhalf the internal state size with respect to-bitZnessage
digest option. Such a normalization for Keccak welult in Keccak-800-256, and will yield the bgate count and
worst throughput. It is also worth mentioning thia throughput of Grgstl can be quadrupled at ¥perse of an
additional 2KGE (estimated), making it the secomdthin terms of throughput, while preserving itp fmsition
with the smallest area.

Table 6 lists our results for all finalists as wedl comparison with previous works.

Table 6. Comparison of our work with previous works

a)
b)

<)
d)

Message Cycles  Tput
Reference  Tech (ﬁz}eé) Bloc!< S?ze Fr(el\(/qlﬂez?cy ger (Kbrr))s @ (-gggtr)/:r‘rgg)
(bits) Block 100KHZz)

BLAKE [14] 180nm  13.58 512 215 816 63 4.64
BLAKE [14] 180nm g &@) 512 100 N.A. 63 7.33
Our BLAKE ~ 90nm 11.3 512 N.A. 240 213 18.88
Grgstl [15] 350nm 14.622 512 56 N.A. 261 17.85
Our Grgstl  90nm 9.2 512 N.A. 1280 40 4.32

JH [16] 180nm 58.832 512 380.22 39 1313 22.32

JH [17] 90nm  31.864 512 353 N.A. 1314 41.24

Our JH 90nm 13.6 512 N.A. 1440 36 2.61
Keccak [6] 130nm g 3b) 1088 200 5160 20 2.15
Our Keccak 90nm 15.2 1088 N.A. 1200 91 5.96
Skein [15]  350nm 12.89¢C) 512 80 N.A. 25 1.94
Skein[17]  90nm 22 5644d) 512 50 10 2694 119.40
Our Skein ~ 90nm 15.5 512 N.A. 592 86 5.58

This compact core uses an external memory to heldrtessage block and does not provide salted lgashin
This value includes the area of the RAM. With ené¢RAM, the coprocessor uses 5kGE (as reportéueiKeccak
main document). Including the area of the RAM y$e®d3kGE.

Skein-256-256.
Skein-512-256.



9 Conclusion and Future Work

‘Lightweight’ is the rising star of cryptography.oMever, since existing security standards and fixies are most
of the time not suitable for deployment in lightglei devices, there have already been several weeati
implementations of these standards targeted fotdigight applications. Furthermore an increasingioer of new
lightweight algorithms have been proposed. Whilesth algorithms have mostly focused on block ciphers
researchers have recently focused on lightweighh Hanctions as well. Unfortunately, these studiase so far
taken a path completely independent of the ong@htA-3 standardization process, where the suitgbftir
lightweight applications issue is neglected. Wedwel that the two efforts should somehow be combureat least
associated.

Such an association can only be possible afterosotigh suitability analysis of the SHA-3 finalistsr
lightweight applications. The term ‘lightweight’cale covers a very wide range, such as lightweigheims of
area, speed, power consumption, energy consumptiors combination of these, depending on the sigecif
application. Therefore, we have limited our focustbe lightweight for area, which also resultsightweight for
average power consumption in most applications;tded to reach the lowest possible recorded gatmts for all
five finalists. Use of block memories is avoided éompatibility on different platforms. We have hesuccessful in
reaching our target of lowest gate count, and ewanaged to surpass some of the recently propogetiviight
hash functions in terms of compactness and thrautghp

The next step in our study is the prototyping @ lightweight versions of the finalists. This wallso allow us to
perform a comprehensive power analysis. For thgetgprototype, we have already implemented a gerdiO
based interface in order to allow data transfewbet an external controller and the SHA-3 finaligt® also plan
to implement our lightweight circuits on differeRPGA platforms, and analyze their side-channekthkttasistance
first on the FPGA implementations, then on the giggied ICs.
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